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We study a simple model of competition in which each player has a fixed strength: randomly selected
pairs of players compete, the stronger one wins and the loser is eliminated. We show that the best
indicator of future success is not the number of wins but a player’s wealth: the accumulated wealth
of all defeated players. We calculate the distributions of strength and wealth for two versions of
the problem: in the first, the loser is replaced; in the second, the loser is not. The probability of
attaining a given wealth is shown to be path-independent. We illustrate our model with the popular
game of conkers and discuss an extension to round-robin sports competition.

Pairwise competition within a population of agents is
found in nearly all branches of science: in biology, be-
tween males for the same female and between species for
fixed resources; in physics, in phase ordering kinetics [1]
and galaxy formation [2]; in economics, between individ-
uals or companies in a given industry [3, 4]; in sociology,
in social stratification [5, 6], the minority game [7] and
gambling tournaments [8]; and in all kinds of organised
sport [9].

Many of these systems have been modelled using tech-
niques from statistical mechanics, in which simple pair-
wise interactions between agents give rise to complex
global behaviour within the population.

In a model of social stratification studied by Redner
and co-workers [5, 6], each agent has a positive integer
strength. When two agents interact, the strength of the
stronger increases by one. At the same time, the fitness
of all agents decreases at a fixed rate. The authors find a
phase transition from a homogeneous, single-class society
to a heterogeneous, multi-class society.

In a model of asset exchange [3], when two agents in-
teract, the wealth of the richer agent increases by one
and the wealth of the poorer decreases by one. In the
long-time limit, the distribution of wealth approaches a
Fermi-like distribution.

The scaling behaviour of tournament competition in
organized sport was recently studied in [9]. When two
players interact, the winner stays on and the loser is elim-
inated, where the stronger player wins with probability
p and the weaker with probability 1 − p.

Here we exactly solve deterministic single elimination
competition. Deterministic means the stronger player
always wins; single elimination competition means that
the loser is eliminated. Pairs of players compete one at
a time, as opposed to multiple players competing simul-
taneously.

Summary of paper—In our model, competition oc-
curs within a population of M players, each of which
is assigned a fixed, unique strength. Randomly chosen
pairs of players compete sequentially and the stronger
player wins. At any given time, we do not know the

players’ strengths, only their history of wins and losses
up to that point. We show that the optimal indicator of
strength is not the number of wins but the wealth: each
new player starts with unit wealth, and when two players
compete the winner inherits the wealth of the loser. A
player with a wealth of n is called an n-er. For example,
if a 2-er and a 3-er compete, the winner becomes a 5-er.

We study two versions of the problem. In the first
version, each time two players compete, the loser is re-
placed with a new player with random strength and unit
wealth. Thus the number of players is always fixed at M
and play continues indefinitely. The system approaches
steady state behaviour and we calculate the limiting dis-
tribution of strength, p(s), and wealth, q(n).

In the second version, each time two players compete
the loser is not replaced, and after t = M − 1 competi-
tions only the strongest player remains. Because there
is no limiting behaviour, we calculate the distribution of
strength p̃(s, t, M) and wealth q̃(n, t, M) as a function of
time and system size. (The ˜ symbol designates the di-
minishing, as opposed to fixed, version of the problem.)

For both versions of the problem, we show that the
wealth of a player—which is equivalent to the number of
players he is demonstrably stronger than—is the most
accurate indicator of the likelihood of future success.
We calculate the probability that a player with wealth i
would beat one with wealth j and show that all strategies
for obtaining a high wealth are equivalent—the probabil-
ity of achieving a given wealth is path independent.

We illustrate our model with the popular game of
conkers, in which horse-chestnuts (conkers) are swiped
one at another until the weaker one breaks. A conker’s
score increases by the score of the defeated with each win.
We calculate statistics of a conker with a given score and
offer advice on strategy. We also describe an extension
to round-robin sports competition, in which a group of
teams all play each other once.

Fixed population—We first consider the version of
the problem in which each defeated player is replaced
with a new player with random strength and unit wealth.
Since the number of players is fixed and play continues in-
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definitely, the system approaches steady state behaviour
and we can calculate its long term properties.

We first calculate the limiting distribution of strength,
p(s). Each player has a strength s drawn from a uniform
distribution over the unit interval. (Note that it is only
the rank of the strengths that matters, and the uniform
distribution could be replaced by any other continuous
distribution.) Then p(s) can be determined as follows.

At steady state, we know that the distribution of
strength of the lesser of two samples of p(s) must be uni-
form because the player that we remove must be drawn
from the same distribution as the player which we add.
Our condition on p(s) is

1 = 2p(s)
∫ ∞

s

p(s)ds, (1)

which gives rise to the differential equation

dp(s)
ds

= 2p3(s), (2)

which has solution

p(s) =
1
2
(1 − s)−

1
2 . (3)

This is plotted in Figure 1 and matches the distribution
of strength from a simulated population of 105 players
after 106 competitions (right-hand curve).

Now we calculate the limiting distribution of wealth
q(n) ≡ qn, which can be determined without reference
to strength. The problem is equivalent to calculating the
distribution of mass in a collection of randomly aggregat-
ing particles all initially of mass 1, where each collision
event yields a new mass-1 particle: i + j → k + 1, where
k = i + j. Let qn be the fraction of players with wealth
n. Since every collison yields a 1-er and a non-1-er, af-
ter a long time q1 = 1

2 . The only way of producing a
2-er is from two 1-ers: q2 = 1

2 (q1q1) = 1
8 . Likewise,

q3 = 1
2 (q1q2 + q2q1) = 1

16 and, in general,

qn+1 =
1
2

n−1∑
i=0

qi qn−i. (4)

The solution to this difference equation is the steady state
distribution of player wealth, namely,

qn+1 =
Cn

2(2n+1)
, (5)

where Cn = 1
n+1

(
2n
n

)
is the nth Catalan number. The

values of qn are plotted in Figure 1 and match the distri-
bution of wealth from a simulated population (left-hand
curve). By Stirling’s approximation, the distribution of
wealth n scales as

qn ∼ 1√
π

n−3/2. (6)
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FIG. 1: The steady state distribution of strength p(s) (dotted
line) and wealth q(n) (dashed line) for a fixed population, on a
logarithmic scale. (In a fixed population, every time a player
is defeated, a new one is added with random strength and unit
wealth.) strength (top and right axes): Our theoretical pre-
diction (3) closely matches the result of simulation (×s) for
M = 105 players after 106 competitions. The distribution is
independent of system size, and unbounded as strength ap-
proaches 1. wealth (bottom and left axes): Our prediction
(5) again matches the result of simulation (+s). The distribu-
tion is also independent of system size; the fraction of players
with wealth 1, 2, 3,. . . , is 1/2, 1/8, 5/128, . . . .

Note that (5) becomes more and more valid in the tail
(high wealth n) as time increases. New wealth is added
to the population in the form of 1-ers, which then flows
to the right, and for this reason the average wealth∑∞

n=1 nqn = (M + t)/M diverges, even though half the
players are of unit wealth (the median is finite).

Diminishing population—Here we consider com-
petition between a fixed number of players without
replacement—all losers are eliminated. Unlike the pre-
vious version of the problem, this one has no limiting
behaviour. We solve it exactly as a function of time t
and number of players M .

There is a finite number of competition histories (who
plays whom when) that M labelled players can realize.
The number of histories grows with M as

H =
1

2M−1
M ! (M − 1)!. (7)

It is convenient to visualize the histories as trees on M
labelled nodes, in which two branches merge when two
players compete. No two branches can merge simultane-
ously; the merger events are ordered. Statistical proper-
ties of the system of players can be determined by aver-
aging over all relevant trees.

We first calculate the analogue to (3), the distribution
of strength p̃(s, t, M). For convenience, we first relabel
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the M strengths by their rank order, that is, 1, 2, . . . , M .
The quantity p̃ is the probability that a player with
strength rank s will end up in the last M − t players.
It is given by

p̃(s, t, M) =
1

M − t

∑
b∈Bt−1

C̄(s, t, m, 1) × (8)

t−1∏
k=1

C(s, k, M, 2)bk
(
C̄(s, k, M, 1) − C(s, k, M, 2)

)1−bk ,

where

C(s, k, M, z) =

(
M − s − ∑k−1

l bl

z

)
(

M − k + 1
2

) (9)

and C̄ = 1−C and b is a (t−1)-dimensional binary vector
that in the sum runs over all possible binary vectors B.

Let q̃(n, t, M) be the distribution of wealth for a di-
minishing population, analogous to qn in (5) for a fixed
population. At time t = 0, the distribution is entirely
peaked at 1; at t = M − 2, the distribution is uniform
over all n. The exact form of q̃ is

q̃(n, t, M) =

(
M−n−1
t−n+1

)
(
M−1

t

) , (10)

which can alternatively be written

q̃(n, t, M) =
M(M − t − 1)

(M − n)(t − n + 1)

n−1∏
i=0

t − i

M − i
, (11)

keeping in mind that t ≤ M − 1 and n ≤ t + 1.
Equations (8) and (10) are plotted in Figure 2 for M =

20. For smaller, enumerable values of M (M ≤ 7), we
find that (8) and (10) perfectly match exact enumeration.

Strategy—Assume all players compete randomly
apart from one, which is free to choose which players it
plays. What is the optimal strategy in order to maximise
the probability of achieving some score? For example,
what is the best way for a 2-er to become a 6-er: play 1
4-er, or 2 2-ers, or 4 1-ers?

Our plan for answering this is as follows. We first
calculate the distribution of strength for a player with
wealth n (an n-er). From this we can write down the
probability that an i-er beats a j-er, for arbitrary i and
j. We then show that the form of this quantity ensures
path independence of wealth attainment.

After a competition between players with wealths i and
j, the strength of the survivor, with wealth k = i+ j, has
density distribution

fk(s) = fi(s)
∫ s

−∞
fj(s)ds + fj(s)

∫ s

−∞
fi(s)ds. (12)
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FIG. 2: The distributions of strength p̃(s, t, M) (solid line)
and wealth q̃(n, t, M) (dotted line) for a diminishing popu-
lation. (In a diminishing population, every time a player is
defeated it is eliminated.) strength (solid lines): We show
our prediction (8) for M = 20, at various times t. wealth
(dotted lines): We show our prediction (10) for M = 20 and
various t. For M ≤ 7, exact enumeration perfectly matches
our results.

The solution is

fk(s) = ∂s

(
Fi(s)Fj(s)

)
, (13)

where Fi(s) is the cumulative density distribution

Fi(s) =
∫ s

−∞
fi(s)ds. (14)

Since a 2-er can only be produced by a collision between
two 1-ers, we have f2(s) = ∂s(F 2

1 (s)) and, by induction,

fk(s) = ∂s

(
F k

1 (s)
)
. (15)

If we take f1(s) to be uniform, then (15) becomes

fk(s) = ksk−1. (16)

With the density distribution for strength in terms of
wealth, we can find the probability of an i-er beating a
j-er. It is

P (si >sj) =
∫ ∞

si=−∞

∫ si

sj=−∞
fi(si)fj(sj)dsidsj . (17)

Substituting (15) into (17), we find

P (si >sj) =
i

i + j
. (18)

We now see that the probability of a 2-er becoming a
6-er is 1

3 for all three strategies above: 2
6 = 2

4
4
6 = 2

3
3
4

4
5

5
6 .

In general, for a < b < c,

P (a → c) = P (a → b)P (b → c) =
a

c
, (19)
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and we see that the probability of gaining some score is
path independent—all strategies are equivalent.

Discussion—Why is wealth the correct predicter of a
player’s strength, and why is the probability of attaining
a high wealth path independent? The key reason for both
is the absence of loops in the competition histories—no
two players can have defeated the same player twice. This
means that the wealth of a player is equivalent to the
number of players that he is demonstrably better than
and, crucially, the sets of inferior players for each extant
winner are disjoint. Both the fixed and diminishing pop-
ulation versions of the problem ensure that there are no
loops present in the dynamics, and therefore equations
(12)–(19) are valid for both versions.

We can calculate two other properties of players ap-
plicable to both versions of the problem: the typical
strength in terms of wealth, and the typical wealth at
time of death in terms of present wealth (life expectancy).

We first calculate strength s in terms of wealth n. Be-
cause the distribution of s for a given n is highly skewed
for moderate n, we consider the median instead of the
mean. The median strength smed

n also has a natural
interpretation: it is the probability of beating a new
player with random strength. By definition, the median
strength satisfies

∫ smed
n

−∞ fn(s)ds = 1/2, and thus by (16)

smed
n = n

√
1
2 . (20)

Second, we calculate the life expectancy nexp: the ex-
pected wealth before defeat. The mean life expectancy
is n +

∑∞
i=1

i n
i+n , which is infinite. The median life ex-

pectancy, on the other hand, follows from (18):

nmed
exp = 2n. (21)

The probability of an n-er attaining wealth 2n is pre-
cisely 1/2, independent of strategy. Values of the median
strength and life expectancy are listed in Table 1.

Conkers—One popular example of competition in
which wealth is known but strength is not is conkers
[10, 11], a game played with the nuts of the common
horse-chestnut tree (Aesculus hippocastanum). A hole
is drilled through the centre of the nut and a string or
shoelace is threaded through the hole with a stopping
knot tied at one end to retain the nut. Pairs of players
take turns swiping each other’s conker with their own
until one conker is sufficiently damaged to fall off the
string. Each conker is assigned a score as follows. All
new conkers start with a score of 1. Each time a conker
beats another conker, it adds to its score the score of the
defeated [12]. We assume that the stronger conker wins.

Apart from closed tournaments, ordinary competition
between conkers on the playground is best modelled by
our fixed population model, since a defeated conker is
likely to be replaced by a newly fallen nut. Then the dis-
tribution of strength and score (wealth) are given by the

curves in Figure 1. Regardless of the number of conkers
in play, typically 1/2 of all conkers will be 1-ers, 1/8 will
be 2-ers, 5/128 3-ers, and so on.

The scoring method used in conkers turns out to be ex-
tremely well chosen. No other scoring system better re-
flects a conker’s strength and likelihood of future success.
Moreover, there is no optimal strategy for maximising a
conker’s score—playing a few high-score conkers is just as
sensible as playing many low-score ones. However, not all
strategies for getting a high score are equally fast. If you
have a number of conkers, the quickest way to achieve
a high score is to play high score conkers. Chances are
high that the conker will lose – the probability an i-er
beats a j-er is i

i+j – in which case you simply try again
with another conker. For large n, the typical number of
1-ers necessary to beat an n-er is n ln 2.

If all conkers’ strength is uniformly distributed be-

tween 0 and 1, the median strength of an n-er is n

√
1
2 . Un-

like in nature, where an organism’s expected remaining
lifespan decreases (or at best remains constant [14]) with
age, a conker’s life expectancy increases linearly with the
number of games played. In Table 1 we list some statis-
tics for conkers with a score of n.

Round-robin competition—The concept of wealth
can be extended to round-robin competition in organized
sport [13]. In round-robin competition, each of M teams
plays all the other teams, making

(
M
2

)
games in total.

Sports events which are wholly or party organized in this
way include: the FIFA World Cup (football, called soccer
in the US); the UEFA Cup (football); some American
football college conferences; the Cricket World Cup; and
the Super 14 (rugby union). Typically, the

(
M
2

)
games

are divided into M − 1 different stages, where in each
stage the M teams play M/2 games.

Again, we assume that each team has a fixed strength

Fraction Med. strength Life expect.
Score qn smed

n nexp

1-er 50% 0.500 2-er
2-er 12.5% 0.707 4-er
3-er 6.25% 0.794 6-er
4-er 3.906% 0.841 8-er
5-er 2.734% 0.871 10-er
6-er 2.051% 0.891 12-er
7-er 1.611% 0.906 14-er
8-er 1.309% 0.917 16-er
9-er 1.091% 0.926 18-er

10-er 0.927% 0.933 20-er
20-er 0.321% 0.966 40-er
30-er 0.173% 0.977 60-er
40-er 0.113% 0.983 80-er
50-er 0.080% 0.986 100-er

TABLE I: Statistics for an n-er (a player with wealth n).
From left: wealth; fraction of players with a given wealth (in
the fixed population model); median strength; wealth at time
of death.
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and when any two teams play the stronger one wins. This
time, however, the loser is not eliminated. As we showed
earlier, the wealth of a team is the optimal indicator of
its likelihood of future success in the absence of loops.
However, it is also a good approximation when loops are
allowed, and is exactly valid as t approaches tmax, where
time t ∈ [0,

(
M
2

)
] is the number of games that have been

played.
As a round-robin competition proceeds, construct the

following directed graph. Let M labelled nodes represent
the M teams, and every time some team A beats another
team B, draw a directed edge from B to A. In round-
robin competition, we define the wealth of a team A to
be the basin of attraction of node A, that is, the number
of points which eventually flow to A. This is the number
of teams that A is demonstrably stronger than.

At any time t, we can infer the relative strength of the
M teams by ordering them (or partially ordering them
if there are ties) by their wealth. At time t =

(
M
2

)
, the

wealth perfectly corresponds to the relative strength of
the teams. Our investigations show that, at time t <(
M
2

)
, the wealth of a team remains a good indicator of

strength, significantly better than the number of wins.
Conclusion—We have studied one of the simplest

and most common forms of competition, in which pairs
of players compete sequentially and the stronger player
wins. We showed that the best indicator of future success
is not the number of past wins but rather the player’s
wealth: one plus the wealths of all defeated players,
where all new players begin with wealth one. We calcu-
lated the distributions of wealth and strength when the
loser is replaced and when the loser is eliminated, and
showed that the probability of attaining a high wealth is
path independent. This is likely to modify the way we
order players in real-world competition.

Apart from competition, our model may also be used
to describe systems of random aggregation. In this case
the notion of strength is abandoned, there is no winner
or loser, and we are only interested in the distribution
and attainment of wealth. Examples of this are family
inheritances, which aggregate through marriage, and cor-
porate assets which are combined through mergers and
aquisitions.
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