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Abstract

The Gaia hypothesis [1], that the earth functions as a self-regulating system, has
never sat particularly comfortably with ideas in mainstream biology [2]. A lack
of any clear role for evolution in the model has led to claims of teleology — that
self-regulation emerges because it is pre-ordained to do so [3,4]. The Daisyworld
parable [5], a simple mathematical illustration of Gaia, went some way to addressing
these critiques but, despite recent success in incorporating natural selection [6-9], it
remains a widely held view that the ideas are inconsistent with biological principles.
We show that standard methodology from population genetics can be used to predict
the stationary states and dynamic behaviour of Daisyworlds. The system regulates
its temperature due to the low-level evolutionary dynamics of competition between
the thermally coupled daisies, no higher level principle is invoked. A reconciliation
of Gaia with evolutionary theory may allow further development of evolutionary
arguments for the existence of global self-regulatory systems.

1 Introduction

The Gaia hypothesis as initially proposed by James Lovelock asserted that
the living planet is maintained in homoeostasis “by and for the biosphere” [1].
Homoeostasis conventionally refers to the manner in which the human body
maintains its internal condition and the term is adopted here to describe how
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the abiotic properties of planetary systems are kept at constant or near con-
stant values by the action of strong, life-induced feedback loops. Lovelock’s
work as an atmospheric chemist led him to this hypothesis; he observed that
the presence of life on Earth had significantly altered the atmospheric compo-
sition from the expected chemical equilibrium [10]. The hypothesis has been
refined over the years but its central message has remained the same: that life
is unconsciously regulating the biosphere to the advantage of living organisms.
Only through stressing the unconscious nature of this regulation — particular
with reference to Daisyworld — has the Gaia hypothesis been able to refute
claims of teleology [7,11].

In this article we shall first describe the original Daisyworld model and an ex-
tended one, which permits continuous albedo types originally due to Stocker
[6]. This model is important in the development of Daisyworld as more recently
developed spatial models [12] make use of continuous albedo phenotypes. Sim-
plifying the analysis of this system allows us to relate it to previous work in
mathematical biology. We show how a fitness based approach, originally used
in the context of quantitative genetics, may used to both interpret and solve
the same model of Daisyworld. We justify our conclusions with reference to
simulation studies that exhibit the dynamical and steady state behaviour of
our model.

2 Model Definition

Daisyworld is a simplified model ecology conceived by Lovelock [5,13,14] in
order to illustrate the self-regulation of a biosphere [1]. Two types of daisies
inhabit a ficticious planet, each of which absorbs a different amount of incident
sunlight according to its colour or albedo — white daisies are totally reflecting
(albedo 1), black daisies totally absorbing (albedo 0). The daisies are thermally
coupled with one another and with the bare ground on the planet which is
assigned an albedo of a, = 0.5. Thermal coupling is not so complete that all
daisies are at the same temperature, but strong enough that the temperature
of a daisy is not solely determined by its own albedo [5]. There is no explicit
spatial structure in this model: all daises are in equivalent thermal contact with
one another and with the bare ground. The incident sunlight shines uniformly
across the planet; at thermal equilibrium the energy emitted by the planet,
given to good enough accuracy by a linearised Stefan-Boltzmann law !, is
equal to the amount of incident solar energy. The daisies’ growth is optimised
at a particular temperature Ty, above or below which the birth rate 5(7T') is

I This approximation is used widely in the literature, beginning with the original
paper [5]. We are sufficiently far from the repeated minima of the quartic (at zero)
that the linear law is acceptably accurate.



reduced; this dependence is approximated by a quadratic law [5]. The daisies
die at a constant rate v which is wholly independent of the temperature. The
Daisyworld model, as just defined, has been solved exactly [15,21].

In the original Daisyworld, defined above, there is no mutation, therefore daisy
seeds of both colours are presumed to exist all over the planet. Although the
system spontaneously settles to a homoeostatic steady-state for wide ranges of
solar driving, there are still teleological concerns as the white and black daisies
are present by construction and the appropriate type flourishes when required
to maintain homoeostasis [16]. Natural selection is present in the system only
as a form of differential survival between the two phenotypes; all variation
in the system is present from the outset and the daisies lack the ability to
make any further evolutionary change. A model that remedies at least some
of these concerns by allowing the daisies to adopt any value of albedo from
0 to 1 (grey-scale daisies) was proposed by Stocker [6], and later Lenton [7].
Mutation is incorporated by allowing the albedo of an offspring to differ from
that of its parent by a Gaussian noise term [6] with coefficient m.

3 Direct mathematical approach

This evolvable Daisyworld model may be readily simulated, but an approx-
imate mathematical solution is also possible which follows closely from the
analysis by Stocker. It transpires that the governing equations for this Daisy-
world are mathematically simpler if, instead of working with the actual occu-
pation distribution, a(a;t), we work instead with the probability distribution
of the live daisies, p(a;t). The two are simply related:

a(a;t)
1 —ay(t)

(1)

pla;t) =

where

ay(t) = —/a(a;t)da (2)

We assume here and subsequently that the daisy distribution is sufficiently
narrow that the integration range may be extended beyond [0, 1] without error
(see [6]). This assumption will fail when the limits of regulation are approached
and also when the variance of the distribution is large, i.e. when mutation is
high; both conditions cause sufficent probabilistic weight to be outside the
[0, 1] interval. The temporal evolution of this system in terms of the actual
occupations by the grey-scale analogues is described by the growth equations



used in Daisyworld [5,6,17] modified for this continuous setting

da(a;t)
ot

= afa: BT (a))ay (1) — a(as )y + m 2= 3)

where the final “diffusive” term represents the genetic drift through mutation.
The growth function is 3(T) = 1 — k(T,, — T'(a))? with constant width & and
we require that the linear thermal coupling relation between the daisies [5]
implies that the local temperature felt by a daisy in the interval [a, a + da] is

(1-4)

T(a)=q(A—a)+ Tlma

(4)

where a, is the bare ground albedo, A is the overall planetary albedo (aya, +
(1 — agy)a), ¢ is a constant and 77 is the temperature of a dead planet at
the same solar driving. From this equation we construct a pair of equations:
one representing the temporal behaviour of the amount of bare ground in the
system «g by integrating,

25ll) _ (1~ (1)~ ay(1)G) 9

where G = [ p(a;t)3(T(a))da and the other, the temporal behaviour of the
daisy albedo distribution, p(a;t)

apg;; t) _ 0 (t) [ﬁ(T(a)) - G} plast) + m%_ o

by using the definition (1) and the previous equation (5).

The first equation has two fixed point solutions, one of which is stable and
corresponds to the existence of daisies on the planet. The second equation,
with the population fixed, has been described by Stocker [6] and also Levins
[18,19] in a different setting. A self consistent solution of this equation is a
normally distributed phenotype p(a;t), with a constant variance. This may
be verified by direct substitution [6] or by integrating for the higher moment
equations. Note that the general solution to this equation is in fact a parabolic
cylinder function (see appendix), of which the Gaussian is a special case in
the limit of constant standard deviation. Our simulation results however (Fig
1) indicate that the Gaussian steady state is indeed the one selected.



For a Gaussian distribution we may derive the first moment equation for the
mean albedo from the probability distribution evolution (6) to obtain

= (Tr — Tops + Q(ag —a)). (7)

where @ (given by qoy, + T71(1 — o) /(1 — ay)) is a rescaled version of the
thermal coupling constant q.

We find the planetary temperature at the stationary state, when the time

derivatives are zero, to be
qog(l—ag)

Topt + M]

ag(l—ag)
Ui =)

T="1T;

(8)

which may be binomially expanded to reach the answer 7' ~ T, when gay is
small compared to the temperatures 77 and 7Ty, For an inhabited planet go,
is constrained to be less than T} for any physically reasonable approximation
of heat transfer; in practice for typical parameter choices (¢ = 50) it will be at
least an order of a magnitude smaller. This then gives a concise, theoretically
derived, statement of the homoeostatic nature of the Daisyworld system.

4 Fitness approach

Whilst the method above works for the simple Daisyworld system, it is desir-
able to seek a more general method to enable analysis of more complex models
that have sought to extend or criticise the Daisyworld model. We now show
that we may also approach the problem in a more biologically appealing way
using a frequency-dependent fitness. Considering purely phenotypic evolution,
the effect of natural selection on the mean phenotype can be described as a
closed equation in terms of the mean phenotype and fitness, given that the
phenotype is normally distributed and the variance of this distribution does
not change with time. The analysis above as well as our simulations show that
both these restrictions are reasonably satisfied (Fig 1).

After selection, the next generation will be a fitness-weighted sample from the
current population. The change in mean trait brought about by selection will
be given by the difference between the fitness-weighted mean trait, z,, and an
unweighted mean trait z [20].

0z
ot

=Zy — 2



:&//W(z)zp(z;t)dz - /Zp(Z;t)dZ (9)

where, z is the phenotype and W (z) is the fitness of phenotype. For a popu-
lation with normally distributed trait of variance o2

W= / W (2)p(z: t)dz (10)

The first term in brackets describes a population maximising its fitness on a
static fitness landscape; the second describes the frequency-dependent effects
where interactions between organisms are important.

In Daisyworld we identify fitness W (z) as lifetime reproductive success (3(T'(a))/7)
and albedo a as trait z, thus

W(a) = i l1 b (Top = 271 = qa+ (g = 2T) (2 + (1 - ag>a)2] (12)

Feedback between the daisies and the mean thermal properties of the planet
lead to a frequency-dependent fitness. Substituting this form of the fitness
into (11) we obtain an exact expression for the steady state that determines
the overall planetary temperature, 7', for any solar driving. This steady state
is identical to that found in the previous section by the direct approach (7),
demonstrating, for this particular system, the equivalence of the two differing
approaches. Over a wide range of imposed temperatures Daisyworld main-
tains itself at, or very close to, the optimal temperature for the daisies; this
self-regulatory behaviour is a consequence of natural selection acting upon a
particular form of frequency-dependent fitness.

5 Computational Work

To support the analytic conclusions in this article we present three contrasting
simulation studies: one is inexact but enables the dynamics to be illustrated
whereas the other is a stationary solution of the discrete representation of
equation (3). Finally we present a novel simulation, based on the first, to
illuminate new conclusions we make about Daisyworld models.
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Fig. 1. Simulation Results. On the left figure we illustrate the temperature response
of the system (top panel), the albedo response (second panel), invariance of the
standard deviation (third panel), the level of site occupation (fourth panel) and the
accuracy of the Gaussian approximation on the figure on the right. No error bars
are shown as the results are a snapshot run in order for the temporal response of
system to be observable. The system was allowed to achieve a steady state with
an imposed temperature of 280.5K (red distribution). The system was then run for
5 x 10 time-steps before increasing the temperature to 295.5K . It was then allowed
to settle for 5 x 10* time-steps before another distribution snapshot was taken
(blue distribution). Finally this process was continued with a further increase to
310.5K (green distribution). The Gaussian curve for the given standard deviation
and albedo is shown in each case as a dashed line. The optimal temperature of
295.5K was preserved throughout in steady state.

5.1 Dynamical Simulation

We create a large number, N of daisies and vacancies with each daisy taking a
random initial value for its albedo in the range (0, 1). An overall average albedo
is computed which is then used to calculate the total planetary temperature.
At each iteration a random site in the array is selected, if occupied by a daisy
it may be killed with probability ~, else if unoccupied a daisy chosen from
a random site may spread there with probability 5(Zparent). The parameters
used are N = 10%, large enough to suppress finite size effects, v = 0.2 to permit
sufficiently fast turnover of daisies, ¢ = 50 is equivalent to the WL choice and
m = 0.1 to maintain a narrow distribution of daisies. Other parameters used
are taken by convention.

This approach has the advantage that the dynamics of the system can be
assessed and consequently we run a stepped simulation in real time in order
to demonstrate the relaxation to a Gaussian configuration (Fig 1). This can be
seen from (7), where a perturbation from the steady state could be expected



to decay exponentially with a relaxation timescale, ¢; which is given by

1

bp= ——. 1
! 204qko2Q (13)

A disadvantage of this approach is that it only approximately mimics the an-
alytic equation presented here, indeed this space-free cellular automata (CA)
is precisely described by von Bloh et al.[12] in their comparative analysis
of Daisyworld CAs. This analysis (equation (22)) shows that the stochastic
growth process is incorrect by a factor of 5(T), but the optimising property
of the system means that close to the optimal temperature the two are closely
comparable.

5.2 Steady-state solution

We can alternatively follow the analytic model and discretise the system in
albedo space following the work and notation of Stécker [6]. The discretised
system is divided into Z albedo regions (indexed by 1)

M (B~ ) — ) (e + 7~ 22) (1)

(2

where m is a rescaling of the mutation rate — we adopt m = m/Z? as an
approximation. The variation with mutation rate has already been described
in [6], here we perform more detailed simulations that reveal an interesting
comparison with the analytic results. We find that the self consistency relation

Cl:l—k:qzagzl
Qg

HEARAT
= 0= (1 ag) (15)

accurately predicts the standard deviation of the distribution (see (Fig 2))
rather than the mutation dependency as this is strongly dependent of details
of the choice of m.

The clear constant standard deviation as a function of luminosity in the sim-
ulations can clearly be seen, as predicted by our analytics. Deviations from
this are caused by the assumption regarding the cutting off of the range of
integration as the limits of habitability are approached. This result is appar-
ently at odds with the results of von Bloh et al.who report that the standard
deviation decreases as the luminosity is increased (or decreased) away from its
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Fig. 2. Results from solving the discretised version of the governing equation using
a Runge-Kutta scheme. The plot show 5 different values of m each an order of mag-
nitude large than the next (the top plot has m = 0.1). We use 1000 discrete albedo
intervals in this solution. The predicted value from the self-consistency relation is
shown in dashed grey, the solid black shows our numerically computed solution.
The degree of matching is good, with discrepancies caused by the cutting off of the
Gaussian tails. This increases with mutation rate as the distribution spreads. The
increase in standard deviation asymptotes to a 1/4 power law as m is increased.
Crucially the plot shows that the standard deviation of the albedos is constant, in-
dependent of L confirming our analytic results when the approximations are valid.

ideal value in their spatial CA simulation. Resolving these two seemingly con-
tradictory results leads to a novel and interesting insight into the Daisyworld
system. In the 0-dimensional system described here all the spatial parameters
are “integrated out” in order to yield ¢ in an unspecified process that has yet
to be described. Importantly this means not only the constants relating to
diffusivity (D) and heat capacity (C') but also the spatial configuration of the
system, as ¢ is the movement of heat between differing patches. A genuinely
spatial system with large patch sizes will express a different ¢ parameter than
one with small patches with all else equivalent. The regulatory behaviour of
the two system is also different — the spatial system regulates perfectly with
only stochastic deviation whereas the “0”-d model has systematic variations
(described exactly for the first time in this article). We conclude then that the
spatial system is evolving not only its albedo distribution to regulate its tem-
perature it is also evolving its spatial configuration to optimise this regulation.
To test this idea we have run a third simulation to examine the validity of this
observation which allows ¢ to be a heritable parameter as well as albedo. The
results of this are depicted in (Fig 3) which shows how the standard deviation
of the albedo distribution varies as a function of temperature. This simulation
is run for both the linear and quartic laws for radiative thermal emmision. For
both variants of the law, but especially pronouced for the quartic law (as used
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Fig. 3. Results from a new Daisyworld simulation where the ¢’s are heritable. Results
from both linear and quadratic are shown as they have differing responses away
from the optimal temperature where calibration occurs. The regulatory behaviour
is similar (left) and the standard deviation is approximately parabolic in both cases
in agreement with the von-Bloh model. This sharply contrasts with the behaviour
shown in (Fig 2). This model is a novel Daisyworld simulation and warrants more
detailed examination beyond that possible here. We observe that the daisies select
very low values of ¢, indicating their preference to minimise connectivity when
subjected to steady driving.

in ref [12]), there is a systematic decrease in diversity when the luminosity is
varied in either direction from its optimal value

6 Discussion

We have presented an alternate method for analysing systems with phenotypic
variation and environmental feedback. This analytic methodology is well es-
tablished in quantitative genetics but has not been used before in this context.
We have applied a fitness approach to a continuous variants of the original
Daisyworld model, presented by James Lovelock [5,13,14], previously a source
of some controversy in the biological literature. The method provides analytic
foundation to some of the claims in these systems and in the case of the original
model an elegant analytic statement of homeostatis Tjanet = Topr. Our simu-
lation studies emphasise the strong regulatory proporties of the system; it is
clear that in fully spatial models the underlying structure and connectivity of
the model is also being adjusted to assist in maintaining the optimal tempera-
ture. It is this feature that distinguishes models that regulate with systematic
variations from those that regulate with stochastic variations. This area offers
intriguing possibilities for future research.

The technique employed in this paper is predicated on three assumptions: the
Gaussian distribution of phenotype; the constant standard deviation of the
population; and an appropriate interpretation of the non-overlapping gener-
ations and their subsequent selection. We have demonstrated in this article
a concise method for solving Daisyworld in which self-regulation is explicitly
seen to be an emergent property of competition within the population: what
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confers reproductive benefit to one daisy (having a higher albedo when the
planet is too hot) is also beneficial to the population as a whole (it acts to
cool the planet). The generality or otherwise of this emerging state is central
to the Gaia Hypothesis and remains an open question.
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Appendix

We provide here a few additional mathematical details as a guide to the deriva-
tion of our principle results as well as some extensions. The first step in the
analysis is to rewrite the equation for 7'(a) in what appears to be a non intu-
itive way, introducing the () parameter in the process

T(a) = Tr + q(@— a) + (a, — a)Q (16)

where Q = gay, + T1(1 — a,y)/(1 — a,) as defined in the main text. We also
define a parameter x via

Y= ;m Tyt Qla, —a)) (17)

independent of a, which greatly simplifies the algebra. In particular the quan-
tity G can be computed as

G= [ pla:t)3(T(a))da

—1— k¢ [ (a—a—x)*pla; t)da
=1—kq* (o) +X?) (18)

from which the other results follow. Note that any non-Gaussian effects are
picked up in the equation by the appearance of the skew of the distribution
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in the full time evolution equation for the mean albedo

2

The last term drops out if the distribution is indeed Gaussian. Unfortunately
we cannot prove the distribution is Gaussian, but we have proved that the
Gaussian is a self consistent solution of our equations. A further result can be
derived by looking at the time evolution of the second moment which is only
dependent on precisely the skew and the kurtosis of the distribution, and not
itself. As both these regularised higher moment terms are zero for a Gaussian
we can formally derive that for a Gaussian distribution the standard deviation
must remain constant.

The definitions above also provide a simple way of demonstrating that the
fitness based approach derives an identical distribution. We have identified the
fitness W (a) = 3(T(a))/y and thereby the mean fitness W can be identified
with G/7. By taking derivatives we find

oW 2kqxQ

oa 7 (20)
OW(a) 2kq(q—Q)(a—a—x)

da ¥ (21)

by integrating (21) and combining with (20) in Lande’s relation we immedi-
ately find the result (7).

For completeness we also include the complete analysis of equation (6). By
writing © = a — a we may find a differential equation for pg(a) the steady
state solution for the probability distribution.

Pps(z) 1
o2 + = [02 - %+ 2)@} Ps(x) =0 (22)
where
A m
= 23
ot (23)

the standard deviation of a Gaussian when y = 0. We may also define

x = ;q (AT} — Tope) + Q(1 — 23) (24)

a quantity whose usefulness will become apparent.
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We can now bring equation (22) into a recognisable form by making a further
substitution z = v/2(z — x) /0, which leads to equation

0*pss (2 |
(%2(> + lZ 292 2] Pss(2) = 0. (25)

By comparison with (25) [22] we can now identify ps(z) = D;(z). This is We-
ber’s Parabolic Cylinder Function with [ = % There do not exist expressions
for the moments of this distribution but we can immediately observe that in
the limit as [ — 0 the Weber’s function becomes a Gaussian. However this
limit is not well defined as there do not exist normalisable analytic continua-
tions for non-integer [ for this function, as is known in mathematical physics
[23]. The constraint of normalisability implies that the distribution of daisy
albedo cannot be skewed in response to any perturbation. The only freedom
left to the system is to alter the amount of bare ground, invalidating the form
of (25) and the corresponding parabolic cylinder function solution. We ob-
serve through simulation that external fluctuations are primarily absorbed by
a change in the amount of bare ground in the system rather than a change in
the daisy albedo distribution. This is perhaps at odds with the naive expecta-
tion that the distribution would skew to accomadate external changes before

recentring around a new mean albedo value.

References

[1] Lovelock J. and Margulis L. . Atmospheric Homeostasis: The Gaia Hypothesis.
Tellus 26 1 (1974).

[2] (2002). In pursuit of arrogant simplicities. Nature 416, 247.

[3] Doolittle W. F. . Is Nature really motherly? CoEvol. Quartly Spring, 58-63
(1981).

[4] Dawkins R. The extended phenotype (Oxford University Press, 1979).

[5] Watson A. J. , Lovelock J. E. , (1983). Biological Homeostasis of the global
environment - the parable of Daisyworld. Tellus B 35, 284.

[6] Stocker S. , (1995). Regarding mutations in Daisyworld models. Journal of
Theoretical Biology 175, 495.

[7] Lenton T. M. , (1998). Gaia and natural selection. Nature 394, 439.

[8] Lenton T. M. , Lovelock J. E. , (2001). Daisyworld revisited: quantifying
biological effects on planetary self-regulation. Tellus B 53, 288.

13



[9] Wood A. J., Ackland G. J. and Lenton T. M. . Mutation of albedo and growth
response leads to oscillations in a spatial Daisyworld. Journal of Theoretical
Biology 242, 188.

[10] Lovelock J. E. A physical basis for life detection experiments. Nature 207 568-
570 (1965).

[11] Lovelock J. E. Ages of Gaia 2nd Edn (Oxford University Press, 1995).

[12] VonBloh W. ; A. Block and H. J. Schellnhuber, (1997). Self-stabilization of the
biosphere under global change: a tutorial geophysiological approach. Tellus B 49,
249.

[13] Lovelock J. E. | (1983a). Gaia as seen through the atmosphere. In: P. Westbroek
and E. W. d. Jong. Biomineralization and Biological Metal Accumulation.
Dordrecht: D. Reidel Publishing Company, 15-25.

[14] Lovelock J. E. , (1983b). Daisy World - A Cybernetic Proof of the Gaia
Hypothesis. The Co-evolution Quarterly, Summer, 66-72.

[15] Saunders P. , (1994). Evolution without natural selection - further implications
of the Daisyworld parable. Journal of Theoretical Biology 166, 365.

[16] Downing K. , Zvirinsky P. , (1999). The simulated evolution of biochemical
guilds: Reconciling Gaia theory and natural selection. Artificial Life 5, 291.

[17] Carter R. N. and Prince S. D. (1981). Epidemic models used to explain
biogeographical distibution limits. Nature 293 644.

[18] Levins R. . Some Demographic and Genetic Consequences of Enviromental
Heterogeneity for Biological Control (1969). Bulletin - Entomological Society of
America 15 237.

[19] Levins R. . Extinction (1970). In Some Mathematical Questions in Biology ed.
Gerstenhaber M. , AMS Rhode Island.

[20] Lande R. (1976). Natural Selection and Random Genetic Drift inPhenotypic
Evolution. Evolution 30, 314-334.

[21] Weber S. L. (2001). On Homeostasis in Daisyworld. Climatic Change 48, 465.

[22] Gradshteyn I. S. and Ryzhik I. M. ed. Alan Jeffrey. Tables of Integral Series
and Products (Academic Press).

[23] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. Dover:
New York (1964).

14



